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Discreteness effects on kinklike excitations in microtubules
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~Received 19 July 1995!

We show that the kink excitation in a microtubule is very narrow. The Peierls-Nabarro barrier, due to
discreteness effects, and the diffusion coefficient are obtained. A discussion of the physiological implications
of discretization is given.@S1063-651X~96!09912-6#

PACS number~s!: 87.15.2v
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I. INTRODUCTION

Recently, Sataric’, Tuszyn’ski, and Zakula@1# suggested
that the classicalf4 model in the presence of an electric fie
can serve as the conceptual basis for a realistic physical
ture of the energy transfer in cell microtubules. They de
onstrated that kinklike excitations arise as a result of
guanosine 58-triphosphate~GTP! hydrolysis and the electric
force sustains their propagation along a microtubule. Ho
ever, using the numerical values of the model parame
shows that the kink width is less than the lattice spaci
Thus the model is highly discrete.

The aim of this Brief Report is to analyze the discreten
effects on the kinklike excitations in a microtubule. The p
per is organized as follows. We first give, in Sec. II, a d
scription of a microtubule and define its Lagrangian. In S
III we derive the expressions of the Peierls-Nabarro~PN!
barrier, the mobility, and the diffusion coefficient. We sho
that the discreteness effects renormalize the values of
dynamical parameters of the system. We conclude and
cuss briefly the physiological implications of the discreten
effects in Sec. IV.

II. MODEL AND LAGRANGIAN

A. Description of microtubules

Neurons and other cells are comprised of protopla
which consists of membranes, organelles, nuclei, and
bulk interior medium of living cells: cytoplasm@2#. All cells
possess delicate tubular filamentous structures called m
tubules. The complex dynamic activities of microtubules a
other cytoskeletal elements are essential for the molec
differentiation, formation of synapses, and dendritic spin
@3,4#. In neuronal activities, it is known that the cytoskele
elements are involved in cognitive processes: learning, ex
rience, and memory@5#. Indeed, it has been shown that wh
baby rats first open their eyes, neurons in the visual co
begin producing vast quantities of tubulin. When the rats
35 days old and the critical learning phase is over, tubu
production is drastically reduced@6#.

Of the various filamentous structures of the cytoskelet
microtubules are the most prominent, well studied, and
pear to be the best suited for dynamic information process
@3,4,7,8,10#. Microtubules are hollow cylinders, 25 nm i
diameter, and formed by 13 longitudinal profilaments th
are each a series of subunit proteins known as tubulin~Fig.
1!. The microtubules are connected to each other by lat
551063-651X/97/55~1!/1209~4!/$10.00
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cross-link filaments or synapses. Each tubulin subunit i
polar, 8-nm dimer. Each dimer consists of two slightly d
ferent classes of 4-nm, 55-kdalton~1 dalton.2310227 kg!
monomers known asa and b tubulin ~Fig. 1!. Within the
microtubule, the tubulin dimer subunits are arranged in
hexagonal lattice. Each dimer may be viewed as an elec
dipole whose dipolar character originates from the 18 c
cium ions bound within eachb monomer. An equal numbe
of negative charges are localized near the neighboringa
monomer.

The precise mechanism of energy transfer in microtub
is not well understood. However, following Fro¨hlich’s ideas
@9#, one can assume that coherent excitations such as sol
can propagate in a microtubule provided the chemical
ergy, such as adenosine 58-triphosphate and GTP, is sup
plied. Encouraged by the Fro¨hlich assumptions, Sataric’
Tuszyn’ski, and Zakula considered the nonlinear dynam

FIG. 1. ~a! Structure of a microtubule,~b! its cross section, and
~c! two neighboring dimers~from Ref. @1#!.
1209 © 1997 The American Physical Society
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of dimer dipoles in one protofilament of a microtubule
terms of the well-known double-well orf4 potential model.
The essential argument in favor of introducing the doub
well model stems from the fact that the longitudinal proje
tion of the dimer displacement interacts with the rest of
lattice through a mean-field force due to an anharmonic
tice field potential as in ferroelectrics such as Pb5Ge3O11
and antimony sulphoiodide SbSl@11,12#. This is validated by
the fact that the mobile electron on each dimer can be lo
ized closer to either thea monomer or theb monomer,
resulting in changes in dimer conformation.

B. Model Lagrangian

Thus the Lagrangian of one profilament of a microtub
can be defined as

L5 (
n51

H 12myn
22

c

2
~yn112yn!

22V~yn!J , ~1!

whereyn is the longitudinal displacement of then dimer and
c is the stiffness parameter resulting from strain and elec
static interactions between two neighboring dimers.m is the
effective mass of a dimer. The dot onyn stands for the time
derivative.

The overall effect of the surrounding dimers on a chos
dimer n can then be qualitatively described by the doub
well f4 potential, which is extended to include an elect
field E

V~yn!5
2A

2
yn
21

B

4
yn
42qEyn , ~2!

whereA andB are the model parameters.B.0 andA is a
linear function of the temperature that may change its sig
an instability temperatureTc , that is,

A~T!5A0~Tc2T!, ~3!

with A0.0. In this model, the temperatureT varies below
Tc . The electric fieldE is due to the fact that the microtu
bule cylinder can be taken as a giant dipole, andq represents
the effective mobile charge of a single dimer.

Since the dimers move in a sort of solvent, one must t
into account the force

f n52ml ẏn ~4!

associated with the viscosity of the solvent (l is the damping
coefficient!. We therefore have to deal with af4 model plus
dissipation and an external field. This model has been s
ied extensively both in the continuum limit@11–13# and in
the discrete limit@14,15#. Some applications of the model i
the context of hydrogen-bonded systems such as ice and
roelectrics of order-disorder types have also been consid
@16#.
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III. PN BARRIER AND DIFFUSION COEFFICIENT
FOR A KINK IN MICROTUBULES

A. Theoretical expressions

In the continuum limit, the model Lagrangian~1! with
Eqs. ~2! and ~4! possesses an asymmetric kink soluti
@11,15# defined as

y~x,t !57y0H h11
h22h1

11exp@~x2vt !/L# J , ~5!

where

y05~A/B!1/2

and

L5@2m~c0
22v2!/A#1/2/~h12h2!. ~6!

The coefficientc0, known as the speed of sound, is defin
as

c0
25

cb2

m
,

whereb is the lattice spacing. The coefficientsh1 andh2 are
the extreme zeros of the polynomial

P~h!5h2h31qEB1/2A23/2

and are given by

h15
2

A3
cosS u

3
1
2p

3 D , ~7a!

h25
2

A3
cos

u

3
, ~7b!

with

u5arccosF3qE2A S 3BA D 1/2G . ~7c!

The kink solution~5! exists under the condition

E,Emax5
2A

3q S A

3BD 1/2, ~8!

The velocityv, the damping coefficientl, andh1 andh2 are
related by the equation

v25@9Ah3
2/~2ml219Ah3

2!#c0
2 , ~9!

whereh352(h11h2) is the third zero ofp(h).
Structurally, forE.0, the positiony0h1 corresponds to a

metastable position, whiley0h2 is a stable state. A kink with
a positive velocity displaces progressively the particles fr
the right welly0h2 of the substrate potentialV(y) to the left
oney0h1. For a kink with a negative velocity, the opposi
happens. WhenE,0, the first process is energetically diffi
cult, contrary to the second process. Forf,0, the oposite
happens. We consider hereafter the casef.0 and a kink
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55 1211BRIEF REPORTS
with positive velocity. This corresponds to the most proba
state where all the particles are lying in the stable equi
rium positiony0h2.

In the discrete lattice, one can use the projection oper
method with Dirac’s second class constraints to show
the dynamics of the kink coordinateX @X(t)5vt in the con-
tinuum limit# can be described by the equation~see Ref.
@15#!

MẌ1MlẊ5
pEPN

b
sin~2pX/b!2Fa , ~10!

where

M5
my0

2~h12h2!
2

6bL
~11!

is the effective mass of the kink. The quantityEPN can be
seen as the Peierls-Nabarro barrier occurring in the dislo
tion theory of crystals@17#. Its expression is given here a
@15#

EPN5
2mc0

2y0
2~h12h2!

2p2

180L2sinh~2pL/b! S 11
4p2L2

b2 D S 31
8p2L2

b2 D .
~12!

The termFa in Eq. ~10! is an average force depending o
E.

The interactions between the kink and phonons give
to a new mechanism of energy loss. Moreover, due to th
mal fluctuations, the right-hand side of Eq.~10! may contain
an additional termR(t), obeying the correlativity

^R~ t !&50, ^R~ t !R~ t8!&52lMTd~ t2t8!. ~13!

The angular brackets denote the equilibrium average andd is
the Dirac function. The kink motion is therefore diffusiv
and its diffusion coefficient is given by@18#

D5D0exp~2EPN/kBT!, ~14!

where

D05~kBT!/Ml ~15!

is the diffusion coefficient in the continuum limit~e.g.,
EPN⇒0). The diffusion coefficientD0 is thus weighted by
an Arrhenius factor due to discreteness effects.

B. Numerical values

To estimate the values ofEPN andD in the microtubule,
we have used the following set of parameters reported
Ref. @1#: m510222 kg, q56310218 c, b580310210 m,
l55.631011 s21, andc051.73103 ms21. For the param-
etersA andB, in the absence of any hard data for the m
crotubule, we assume typical values for filamentous fer
electrics such as Pb5Ge3O11. This assumption is due to
structural similarity between microtubules and filamento
ferroelectrics. ThusA(T)510(3202T! J m22, where the
critical temperature for the microtubule is setTc5320 K and
B51.631024 J m24. Although the electric field sharply in
e
-
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s

creases as one approaches the end points of the profilam
we assume that its magnitude is approximately constan
the hole protofilament.

We first analyze the variations ofEPN andD as functions
of the electric fieldE at the physiological temperatur
T5300 K. We thus obtainEmax514.33107 V/m and
y051.12310211 m. The kink widthL decreases asE in-
creases and consequentlyEPN increases@Fig. 2~a!#. This is
due to the relativistic effects. Indeed, the kink velocity i
creases withE, the kink becomes more narrow, and the d
creteness effects are dominant. The diffusion coefficient
creases withE @Fig. 2~b!#. The kink mobility can easily be
deduced from Eq.~9!. It increases withE.

We have also analyzed the variations ofEPN andD as
functions ofT for the electric fieldE5105 V/m. The kink
width increases withT but remains less than the lattice spa
ing. For instance, forT5300 K,L58.5310210 m. Thus the
kink in the microtubule is so narrow that it considerab
suffers the effects of the discrete nature of the protofilame
Thus it cannot propagate freely unless its motion is sustai
by additional external forces such as thermal fluctuatio
EPN decreases whenT increases. This is understandable
we appeal to the fact thatL increases withT. Moreover, this
can be related to the lowering of the substrate potential b
rier Vmax5A2/4B sinceA decreases withT. A comparison of
EPN andvmax leads to the conclusion that the kink facilitate
the transfer of charge and energy in the microtubule. T
temperature dependence of the diffusion coefficient sho
that it increases withT. At the physiological temperature, w
obtainD52.8031025 cm2/s (D054.7831022 cm2/s!.

As concerns for forceFa in Eq. ~10!, it increases with the
electric field E. For instance, for E5105 V/m,

FIG. 2. ~a! Peierls-Nabarro barrierEPN ~in eV! versus the elec-
tric field E and ~b! diffusion coefficientD ~in 1022 cm2/s! versus
E.
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Fa51.07310210 N; for E5106 V/m, Fa510.7310210 N;
and forE5107 V/m, Fa5107310210 N.

IV. CONCLUSION

We have analyzed the discreteness effects of the mo
of kinklike excitations in microtubules, the prominent an
the best suited filamentous structures for dynamic inform
tion processing in neurons. With the approximated value
model parameters, it is seen that the kink in the microtub
is so narrow that the discreteness effects cannot be negle
The potential barrier that modulates the kink motion and
diffusion coefficient have been obtained. Their depende
on the electric field and on the temperature has b
sketched.

However, the dynamics of kink and soliton excitations
microtubules is still an open and important problem. Inde
with the numerical values of model parameters assumed
microtubules, preliminary results of a direct numerical sim
lation show that such narrow kink excitations cannot pro
gate over long distances whatever the value of the elec
field satisfying the conditionE,Emax. They can move only
because of external fluctuations, so that the motion has
v.
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activated character, showing hopping from one PN well
another.

Discreteness effects and the resulting type of motion a
lyzed here have some physiological implications. It can
stated that the transfer of energy or charges in microtub
has a Brownian and stochastic character. Consequently,
can explain the well-known erratic process of assembly
disassembly at the ends of microtubules. Indeed, one
relate the rate of assembly and disassembly of microtub
to the stochastic rate of kink excitations arriving at their en
@1#. Moreover, the diffusive nature and the pinning effec
characterizing the kink motion in microtubules can help
the understanding of the dynamic instability of the veloc
of microtubules growth@19# and the rate of microtubule
nucleation@20#.
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